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Measuring variation among communities

> 20 distance metrics available to estimate dissimilarity between communities

(Legendre and Legendre 2012)
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• Ecology: abundance
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PCA ≡ Analyze a table with 𝐾 dimensions (or variables, ≥ 4) 

measured on 𝐼 individuals  
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• Exploratory statistics, multidimensional

descriptive statistics

• Synthetize, summarize and rank information 

contained in a table (high dimension, 𝐾 ≥ 4)

• Visualize data tables using simple grapics

(2D, 3D)

PCA

𝐼 individuals ∈ ℝ𝐾

Variables: species

Individuals: lakes
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• Idea of distance between idividuals

• Distances as close as possible
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Search for a subspace that best summarizes the data 

(i.e., principal components)
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Then we centered the data … 𝑦𝑖𝑘 = 𝑥𝑖𝑘 − 𝑥𝑖𝑘
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NOTE 1: Centered ≡ Translation of cloud         No change in shape of cloud

Then we centered the data … 𝑦𝑖𝑘 = 𝑥𝑖𝑘 − 𝑥𝑖𝑘
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• 𝑎 distance from the point to the origin

• 𝑏 distance from the point to its projection   

on the axis 

• 𝑐 distance from the projection to the origin
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• 𝑎 constant distance

• 𝑏 is small <=> 𝑐 is large

𝑎2 = 𝑏2 + 𝑐2 [Pythagoras]

• Minimizing 𝑏 (or 𝑏2) ≡ Maximizing 𝑐 (or 𝑐2)

• 𝐼𝑡𝑜𝑡𝑎𝑙 = 𝐼𝑃𝐶1 + 𝐼𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
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• We look for PC2 ⊥ PC1
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Bringing out a structure – PCA

Case of study: Spatio-temporal monitoring of microalgae in lakes Geneva and Annecy
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Case of study: Spatio-temporal monitoring of lakes Geneva and Annecy
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Understanding the structure – Variation partitioning
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Understanding the structure – Variation partitioning
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Understanding the structure – Variation partitioning

Case of study: Data from Verneaux (1973)        Doubs river (France), fish communities
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Understanding the structure – Co-inertia analysis
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Co-inertia analysis:

Enables finding common structures between two set of variables
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Understanding the structure – Co-inertia analysis

1. Concordance between eDNA and microscopy data

Practical course on 
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Understanding the structure – Co-inertia analysis

2. Congruence between two biological communities
e.g., Alric et al. Mol. Ecol. Res., 20 (2020) – Host-virus association in marine environment
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Understanding the structure – Co-inertia analysis

2. Congruence between two biological communities
e.g., Alric et al. Mol. Ecol. Res., 20 (2020) – Host-virus association in marine environment

Co-correspondence Analysis (CoCA) ≡ co-inertia based on two CA



Understanding the structure – Co-inertia analysis

2. Congruence between two biological communities
e.g., Alric et al. Mol. Ecol. Res., 20 (2020) – Host-virus association in marine environment
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2. Congruence between two biological communities
e.g., Alric et al. Mol. Ecol. Res., 20 (2020) – Host-virus association in marine environment
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Statistical analysis workflow from metabarcoding data



Differential abundance analysis

Differential abundance analysis: 

Identify biomarker taxa (i.e., taxa whose relative abundance

is significantly higher under given environmental conditions)
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2017
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2020

Lutz et al. Front. Appl. Math. Stats. 8 (2022)



Statistical analysis workflow from metabarcoding data



Network analysis

Co-occurrence network:

Lima-Mendez et al. Science 348 (2015)

Plankton functional types
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Network analysis

Co-occurrence network:

Lima-Mendez et al. Science 348 (2015)
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Possitive associations
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Lutz et al. Front. Appl. Math. Stats. 8 (2022)
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Network analysis

Similarity between two biological communities: Alric et al. (2020) Mol. Ecol. Res.

Spatial structuring of microalgae-virus association networks 

in relation to eutrophication gradient
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Statistical analysis workflow from metabarcoding data
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