

Diatoms metabarcoding: Preservation & Storage

Agnès Bouchez

Comparison of preservation methods and storage durations

Cécile CHARDON Ana BARICEVIC Agnès BOUCHEZ

GENERAL CONTEXT

Advantages of DNA metabarcoding vs morphological analysis:

- Cost-effectivness
- Reproducibility, comparability
- High-throughput analysis: potential to increase the number of monitored sites, the frequency of controls

Disadvantages:

No standard protocols

E.g.: different methods of sample preservation are used — no information about duration between sampling and sequencing

EXPERIMENT

Aims

- Evaluate the impact of preservation conditions and storage durations of samples on the eDNA metabarcoding process
- Bring scientific and operational knowledge for coming standardisation at CEN level

How

- DNAqua-Net: workshop + Short-term scientific missions
- lead and HTS funding: INRAE France
- participants: France, Croatia, Spain, Sweden, Germany

Sample collection & Preservation shipment

methods

NA extraction NA treatment

Data analysis

contrasted European sites

2 marine sites

pro bay (Spain) m bay (Croatia)

4 river sites

Oligotrophic alpine river (France)

Mesotrophic river (Spain)

Eutrophic river (Germany)

Humic river (Finland)

mple collection & Preservation shipment

methods

NA extraction NA treatment Data analysis

Marine samples

- Phytoplankton
- Water column filtration
- Sample preservation as filters

Freshwater samples

- Benthic biofilm
- Stones scraping
- Sample preservation as pellet or biofilm suspension

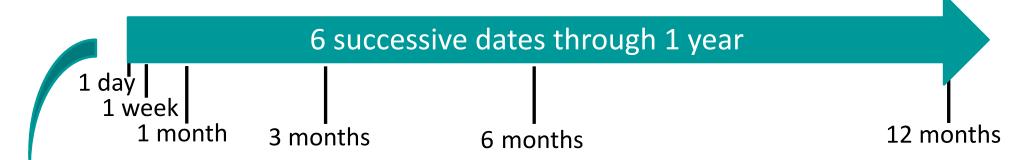
Sample collection & shipment

Preservation methods

NA extraction NA treatment Data analysis

3 preservation methods

- Cryo-preservation (-80°C marine samples / -20°C freshwater)
- ♦ + 4°C + Ethanol
- 20°C + Home-made « RNA later »


Sample collection & Preservation shipment

methods

NA extraction

DNA treatment Data analysis

NucleoSpin Soil Kit - Macherey Nagel (Vasselon et al. 2017)

6 sites

preservation methods

* 2 DNA extract replicates (per site and per method)

= 216 DNA samples

Sample collection & Preservation shipment

methods

NA extraction

DNA treatment

Data analysis

DNA quality and quantity

- Quality 260/280 nm ratio Nanodrop®ND-1000
- * Quantity DNA concentration (ng/μL) Quant-iTTM PicoGreen® dsDNA assay kit

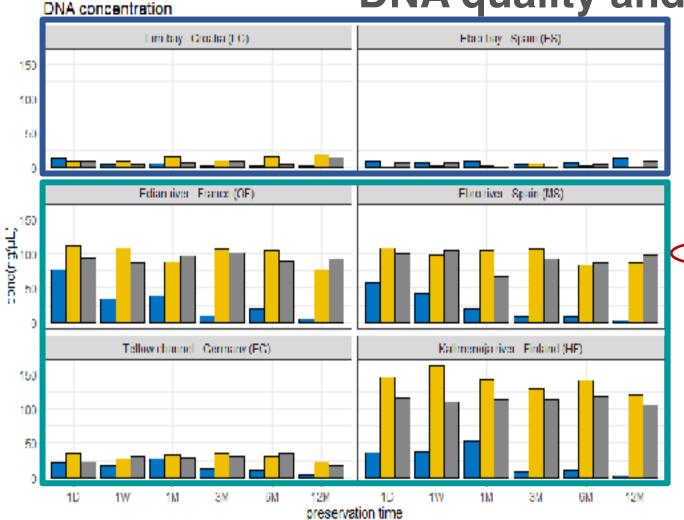
DNA metabarcoding: diatom assemblage

- PCR with *rbc*L chloroplastic gene (312 bp)
- Library preparation and sequencing: Illumina MiSeq paired-end sequencing kit (V2, 250 bp × 2) (GeT-PlaGe, Auzeville, France)

marine

freshwater

Sites


Sample collection a shipment

Preservation methods

NA extraction NA treatment

Data analysis

DNA quality and quantity

- No observed impact on DNA quality
- [DNA marine] < [DNA freshwater]
 - Freshwater samples in ethanol (ET) had significantly lower [DNA] than FR & RL

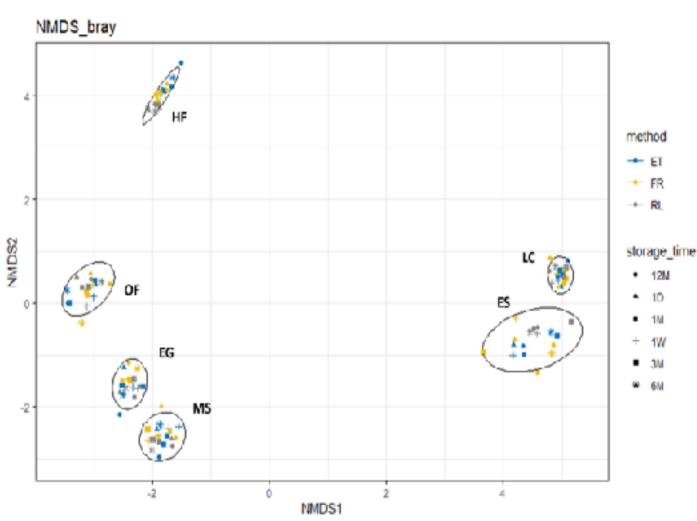
www.biolaweb.com

Sample collection & Preservation shipment

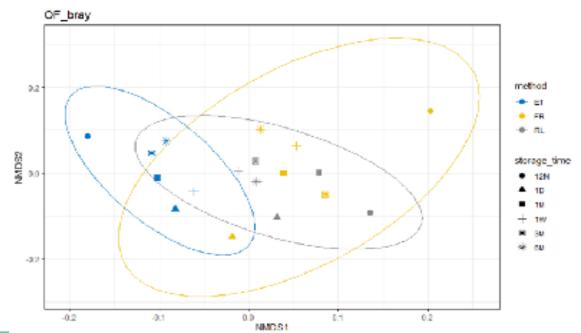
DNA extraction

Diatom community diversity

- Freshwater sites have higher:
 - read nb
 - OTU richness
 - diversity index values (Shannon)
- Preservation methods have no significant impact on:
 - read numbers
 - OTU richness
 - diversity index values (Shannon)


Sample collection & shipment

Preservation methods


NA extraction NA treatment

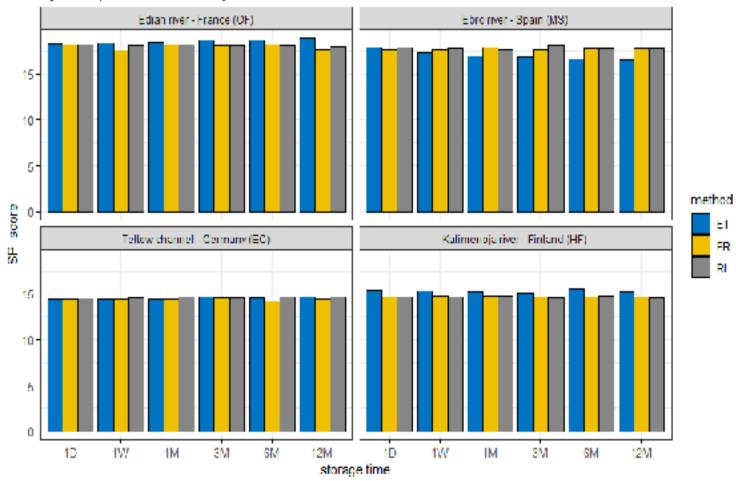
Data analysis

Diatom community composition

- Sampling sites have main effect
- Site-by-site analysis:
 - Storage duration has no effect
 - Preservation method has a significant effect at all sites

Are some taxa differentially detected?

- Community changes are mainly due to:
 - changes in relative abundances for abundant taxa
 - changes in presence-absence for low-abundant taxa
- ❖ Overall number of taxa detected ≈300 taxa/sample:
 - 81% of taxa detected by all 3 preservation methods
 - <5% of taxa detected by only 1 method</p>
- Rare taxa were mostly method-specific and usually appeared and disappeared over time without any obvious pattern.


methods

NA extraction NA treatment

Data analysis

Ecological quality (freshwater sites)

Specific pollution-sensitivity index

IPS scores based on:

- OTUs at species (73%) / genus (19%) levels
- read abundances
- IPS values were very stable:
 - whatever the preservation meth.
 - whatever the storage duration

TAKE-HOME MESSAGES

For biomonitoring purposes (biodiversity and/or ecological quality indices):

Overall robustness

Ethanol preservation of freshwater samples

- ✓ Lower [DNA], no impact on community composition / IPS
- √ Ethanol is an operational method for field campaigns and storage
- ✓ Even in the "worst case" (ethanol / 1-year preservation): richness, diversity, IPS were not affected

For detection of low-density species

Some differences for OTUs inventories -> due to changes in low-abundant taxa Preservation/duration has to be well thought

Need for operational standards

Metabarcoding and Metagenomics 6: 349-365 DOI 10.3897/mbmg.6.85844

Research Article

a)

Recommendations for the preservation of environmental samples in diatom metabarcoding studies

Ana Baricevic¹, Cécile Chardon², Maria Kahlert³, Satu Maaria Karjalainen⁴, Daniela Maric Pfannkuchen¹, Martin Pfannkuchen¹, Frédéric Rimet², Mirta Smodlaka Tankovic¹, Rosa Trobajo⁵, Valentin Vasselon^{2,6}, Jonas Zimmermann⁷, Agnès Bouchez²

https://doi.org/10.3897/mbmg.6.85844

Questions?

