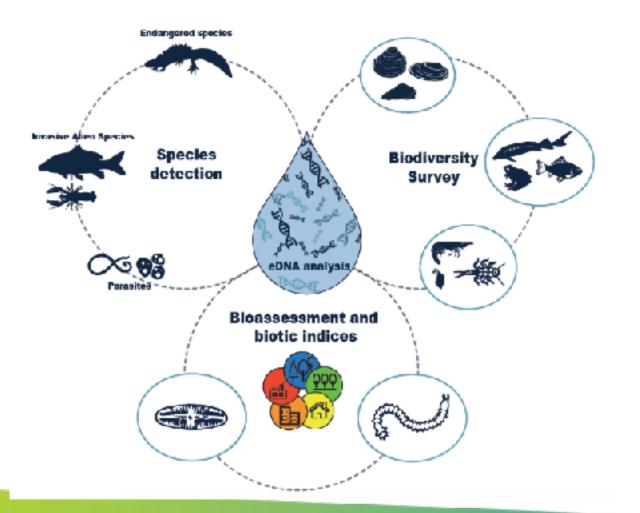


Implementation Roadmap

Agnès Bouchez

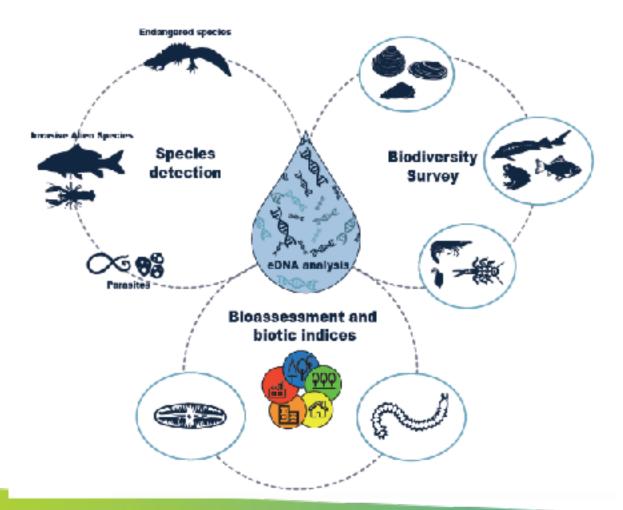
A strategy for successful integration of DNA-based methods in aquatic monitoring

Agnès BOUCHEZ, DNAqua-Net 2020 workshops participants, Philippe BLANCHER, Estelle LEFRANCOIS, Valentin VASSELON, Frédéric RIMET



Funded by European Union

New DNA-based methods


Pawlowski, Apothéloz-Perret-Gentil, Mächler & Altermatt 2020 Swiss Federal Office for the Environment

Funded by European Union

New DNA-based methods

Inclusion in monitoring practices ?

 \rightarrow Not straightforward

Funded by European Union

Implementation of DNA-based methods

• Potential to improve aquatic bioassessment and monitoring;

E.g. high-throughput, non-invasive, higher richness is generally detected, better comparability among sites-campaigns, etc.

• Does not provide similar information than classical approaches, which limits their direct implementation;

E.g. taxa lists will always differ, as DNA-based tools systematically measure differently to morpho-based ones

→ Inclusion of DNA-based methods in monitoring practices requires harmonised actions at national and international levels.

Implementation of DNA-based methods

To foresee the necessary steps and stimulate implementation, prospective workshops were organised:

> 1st workshops: national level (FR, CH) / SYNAQUA

 \rightarrow various scenarios \rightarrow **best scenario**

Implementation of DNA-based methods

To foresee the necessary steps and stimulate implementation, prospective workshops were organised:

1st workshops: national level (FR, CH) / SYNAQUA

 \rightarrow various scenarios \rightarrow **best scenario**

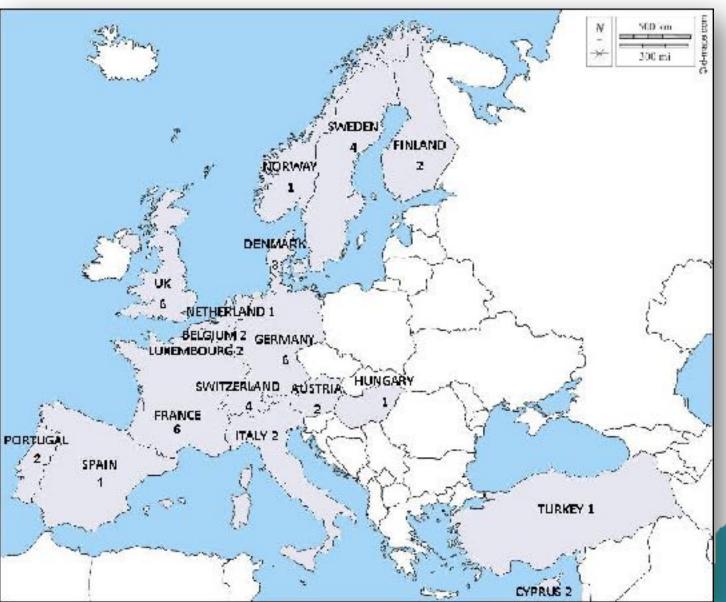
2nd workshops : European level / INRAE and COST Action DNAqua-Net

 \rightarrow a **roadmap** for an efficient implementation of the best scenario

Funded by European Union

DNAqua-Net Worpkshops

- 18 countries
- 51 participants: Scientists, Environmental authorities, Decision-makers


Funded by European Unio

DNAqua-Net

• 8 online workshops (March-April 2020)

AWEB

- 2 facilitators/ws
- 5-8 participants/ws

Highlight the effectiveness and benefits of DNA-based methods

Develop an adaptive approach for successful implementation of new methods Provide best practice guidelines and standards

 \rightarrow 6 main objectives

Involve stakeholders and ensure good knowledge transfer Support the environmental biomonitoring sector to achieve the required changes

 $\langle \mathbb{C} \rangle$

Funded by European Union

Steer the process at European level

oiolaweb.com

Highlight the effectiveness and benefits of DNA-based methods Understand managers' needs and respond to them

When methods are satisfactory / required by regulation, implementation is not a priority

Highlight the effectiveness and benefits of DNA-based methods

LAWEB

Understand managers' needs and respond to them

- When methods are satisfactory / required by regulation, implementation is not a priority
- > Focus on topical management issues not yet addressed

E.g. monitoring impact of restoration, biodiversity, invasive or endangered species, multiple pressures, neglected waterbodies...

Highlight the effectiveness and benefits of DNA-based methods

LAWEB

Understand managers' needs and respond to them

- When methods are satisfactory / required by regulation, implementation is not a priority
 - Focus on topical management issues not yet addressed

✓ Numerous pilot studies / efficiency / good comparability Invasive of endangered species, multiple pressures,

- intercalibration
 neglected waterbodies...
- \checkmark Take full advantage of DNA-based methods
 - A develop new indices adapted to new DNA data
 - \rightarrow develop approaches for over-looked issues

✓ An opportunity to reduce differences between EU regions and countries

Develop an adaptative approach for successful implementation of new methods

AWEB

Most DNA-based methods are mature enough to be implemented into biomonitoring and meet end-users needs. How to proceed?

A. Wait until methods are fully tested, evaluated and calibrated ?

Optimisation of a method = an endless task. At what stage development is sufficient to move to the operational phase, even if questions remain?

B. Adopt an adaptive approach ? Harmonisation and comparability of the methods will be a challenge

Develop an adaptative approach for successful implementation of new methods Most DNA-based methods are mature enough to be implemented into biomonitoring and meet end-users needs. How to proceed?

- A. Wait until methods are fully tested, evaluated and calibrated ?
 - Optimisation of a method = an endless task. At what stage development is sufficient to move to the operational phase, even if questions remain?
- B. Adopt an adaptative approach & go forward ? Harmonisation and comparability of the methods will be a challenge

Support the environmental biomonitoring sector to achieve the required changes

- Create conditions so that private companies invest and get involved
- Demonstrate that it is not only a cost-effective solution:
 - can improve biomonitoring
 - e.g. increase temporal/spatial coverage
 - can provide more information

e.g. finer taxonomic level, all life stages

- \rightarrow useful for decision-makers
- \rightarrow in line with citizens' concerns

Involve stakeholders and ensure good knowledge transfer

AWEB

Communication and training:

- to be exemplary and very effective
- going hand in hand with stakeholders

e.g. through pilot studies

Joined training sessions between different stakeholders

e.g. hydrobiologists, molecular biologists, environmental managers

Steer the process at European level

- Collaboration between EU bodies (e.g. ECOSTAT) and scientists to discuss/foster implementation
 - clear mandate, e.g. knowledge sharing, produce recommendations...
 - provide common framework
 - help obtain funding

Provide best practice guidelines and standards

A flexible approach:

1. guidelines and guides to good methods and practices for an **overall framing**

A practical guide to DNA-based methods for biodiversity assessment Open-access Bruce et al. 2021 - 90p https://doi.org/10.3897/ab.e68634

Funded by European Union

te Bert Reden) Berlind Jaco (Bard Britsh Berlind Berl

Provide best practice guidelines and standards

A flexible approach:

- **1. guidelines and guides** to good methods and practices for an **overall framing**
- 2. imposed methods and standardisation for key stages such as sampling.

Take-home messages

Crucial need for high-performance diagnostic and monitoring tools

- Take full advantage of DNA-based methods
- Based on **stakeholder needs** → discuss/collaborate
- Accompany companies on board
- Communication & Training
- Shared protocols & Standards
- Harmonised action at European level

To go further

а

https://doi.org/10.3897/mbmg.6.85652

Metabarcoding and Metagenomics 6: 215–226 DOI 10.3897/mbmg.6.85652

Forum Paper

A strategy for successful integration of DNA-based methods in

aquatic monitoring

Full report: https://doi.org/10.15454/29LFIW Philippe Blancher¹, Estelle Lefrançois², Frédéric Rimet³, Valentin Vasselon^{1,4}, Christine Argillier³, Jens Arle⁶, Pedro Beja⁷, Pieter Boeus⁹, Jeanne Boughaba⁹, Christian Chauvin¹⁰, Michael Deacon¹¹, Willie Duncan¹², Gunilla Ejdung¹⁴, Stefania Erba¹⁴, Benoit Ferrari¹⁰, Helmut Fischer¹⁰, Bernd Hänfling¹⁷, Michael Haldin¹⁸, Daaisl Hering¹⁶, Nicolas Hette-Trenquast²⁰, Alice Hiley²¹, Marko Järvinen²², Benjamin Jeannot²³, Maria Kahlert²⁴, Martyn Kelly²⁵, Julia Kleinteich¹⁰, Serdar Koyuneuoğlu²⁴, Saseha Krenels³⁶, Sidsel Langhein-Winther¹¹, Horian Leese¹⁹, David Mann²⁷, Rémy Marcel²⁰, Stefania Marcheggiani²⁵, Kristian Meissner²⁵, Patricia Mergen³⁶, Olivier Monnier²⁶, Frank Narendja³¹, Diane Neu³², Veronica Onofre Pinto³³, Alina Pawlewska³⁴, Jan Pawlowski²⁶, Martin Petersen¹¹, Sandra Poikane³⁶, Didier Pont³⁷, Marie-Sophie Renevier³⁰, Steinar Sandoy³⁹, Jonas Svensson¹⁸, Rosa Trobajo⁴⁰, Andrea Tünde Zagyva⁴¹, Iakovos Tziwrtzis⁴³, Berry van der Hoorn⁴³, Marlen Ines Vasquez⁴⁴, Kerry Walsh²¹, Alexander Weigand⁴⁵, Agnèt Bouchez⁵

Funded by European Union

Questions ?

Funded by European Union