

Skills evaluation

Grab a paper, a pencil

Funded by European Union

Define :

- barcoding
- metabarcoding

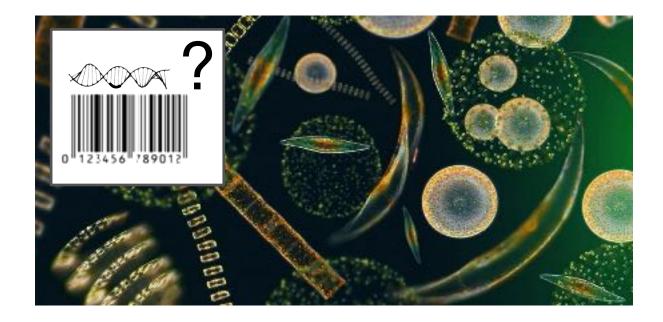
Funded by European Union

Give the main steps of DNA metabarcoding for diatoms

Funded by European Union

Which strategy are appropriate to store DNA samples?

A- Ethanol B- RNA buffer C- Formaldehyde D- Preservation -20°C E- Rakija



What makes a good DNA barcode?

Funded by European Union

After bioinformatic analyses, what can you expect from metabarcoding?

A- The relative abundance of living and dead organisms in the sample but also traces left from other B- The exact abundances of living organisms in the sample

B- The exact abundances of living organisms in the sample
C- The relative abundances of living organisms in the sample
D- The presence/absence of living and dead organisms in the sample but also traces left by others

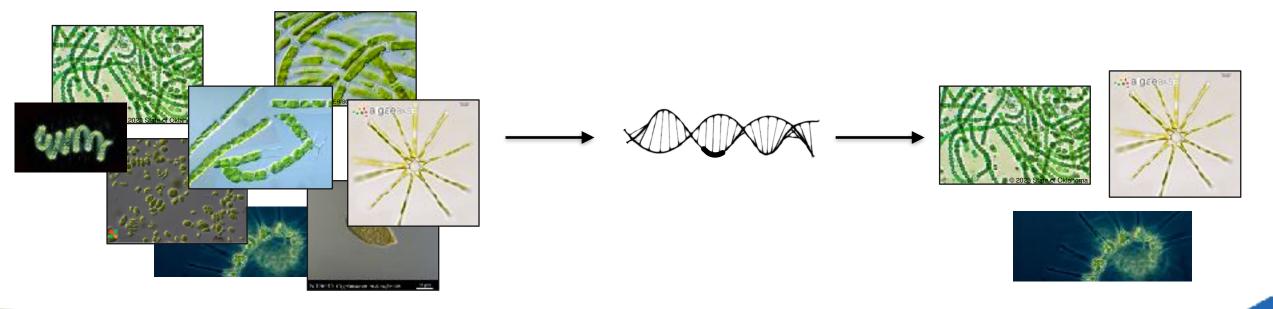
7

What makes a good reference library?

Funded by European Union

Can you cite several sequencing technologies?

advantages/disadvantages?



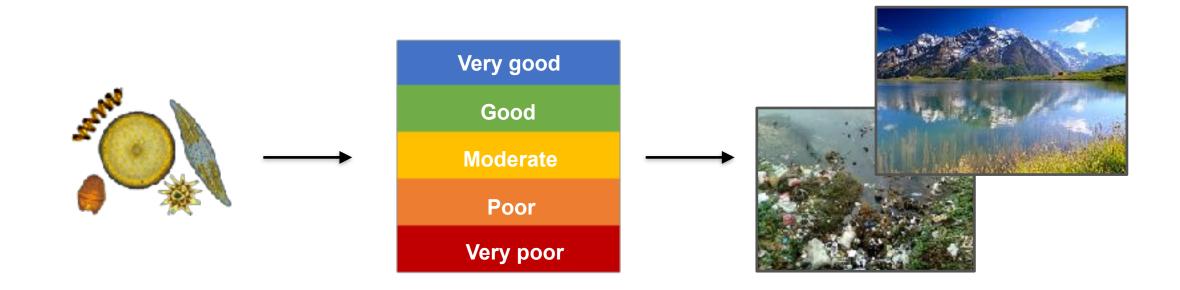
Funded by European Union

You made a mock community with 10 species. After sequencing you recovered only 3 species. Why?

Funded by European Union

Biolaweb project is finished and a good reference barcoding library for Balkan diatoms is available.

What can explain the differences between diatom lists obtained in microscopy vs metabarcoding in Balkan region?



Funded by European Union

Give 2 different strategies for index developement based on metabarcoding data (diatoms or phytoplankton)?

Funded by European Union

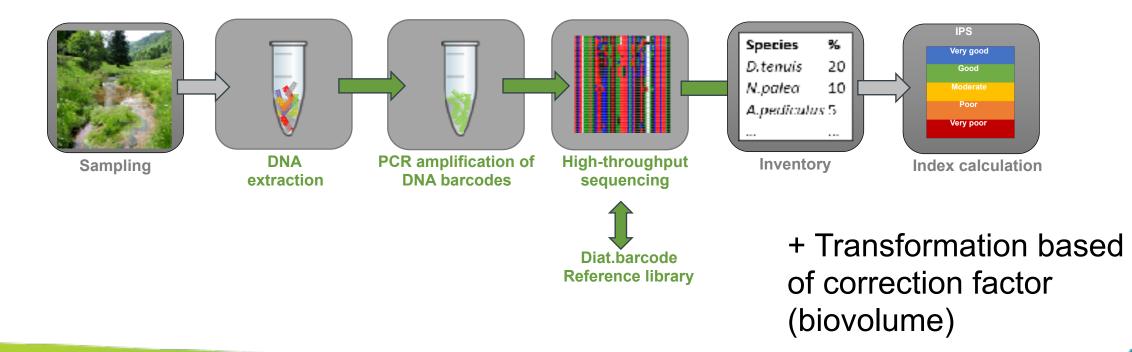
Define

barcoding

metabarcoding

Funded by European Union

Give the main steps of DNA metabarcoding for diatoms



Funded by European Union

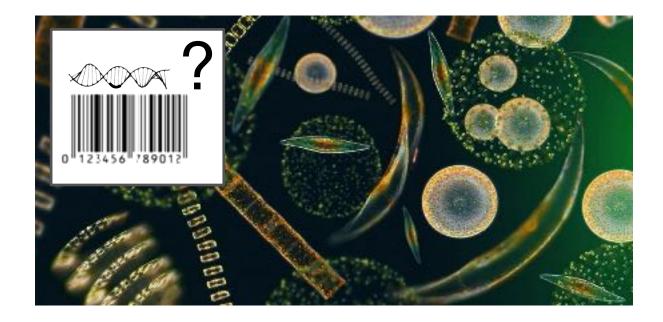
Give the main steps of DNA metabarcoding for diatoms

Funded by European Union

Which strategy are appropriate to store DNA samples?

A- Ethanol B- RNA buffer C- Formaldehyde D- Preservation -20°C E- Rakija

Which strategy are appropriate to store DNA samples?


A- Ethanol
 B- RNA buffer
 C- Formaldehyde
 D- Preservation -20°C
 E- Rakija - ???

Funded by European Union

What makes a good DNA barcode?

Funded by European Union

What makes a good DNA barcode?

- Universality: A single barcode that targets the entire target-group diversity,
- Variability: an efficient barcode able to identify the target-group to <u>species</u> with <u>conserved</u> regions to set primers
- Specificity: a barcode specific of the target-group, <u>not amplifying other groups</u> (e.g. Chrysophytes, etc...)
- Lenght: the barcode lenght must fit the sequencing technology (Illumina Miseq)
- References: A barcode with reference barcoding libraries complete enough to analyse the river/lake diversity

After bioinformatic analyses, what can you expect from metabarcoding?

A- The relative abundance of living and dead organisms in the sample but also traces left from other B- The exact abundances of living organisms in the sample

B- The exact abundances of living organisms in the sample
C- The relative abundances of living organisms in the sample
D- The presence/absence of living and dead organisms in the sample but also traces left by others

After bioinformatic analyses, what can you expect from metabarcoding?

A- The relative abundance of living and dead organisms in the sample but also traces left from other
B- The exact abundances of living organisms in the sample
C- The relative abundances of living organisms in the sample
D- The presence/absence of living and dead organisms in the sample but also traces left by others

7

What makes a good reference library?

Funded by European Union

What makes a good reference library?

- Completness
- Taxonomic curation
- Open access
- Data and metadata traceability
 - When, where, who sampled and how Sequence production
 - Voucher: deposited in an open accessible collection
 - DNA: who extracted, sequenced, following which procedures (primers...), where DNA is stored If culture: who isolated, date of isolation

Can you cite several sequencing technologies?

advantages/disadvantages?

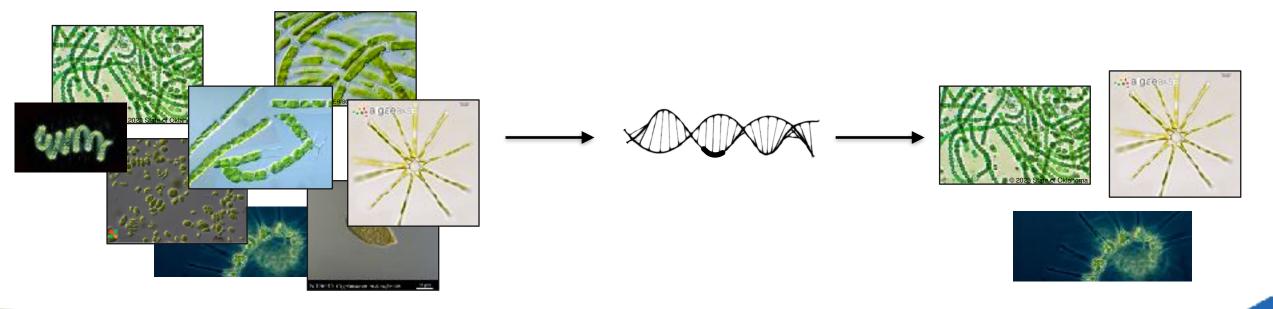
Funded by European Union

Can you cite several sequencing technologies? advantages/disadvantages?

Illumina

Read length: 2 x 150 bp to 2 x 300 bp 0,5% error rate 10.10e6 reads per run 6-7 GB per run

Minilon


Read length: several 10 kbp Error rate: 5% 500 MB

You made a mock community with 10 species. After sequencing you recovered only 3 species. Why?

Funded by European Union

You made a mock community with 10 species. After sequencing you recovered only 3 species. Why?

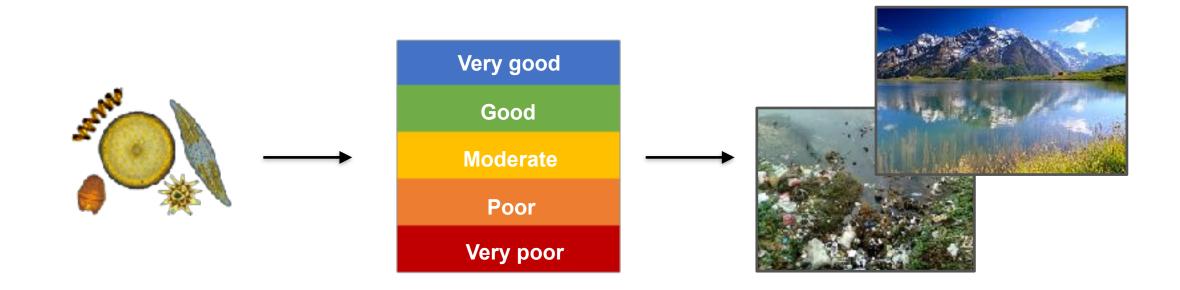
- Problem with extraction
- Primers not adapted
- Barcode not adapted to differenciate some species
- Reference library incomplete
- ...

Biolaweb project is finished and a good reference barcoding library for Balkan diatoms is available.

What can explain the differences between diatom lists obtained in microscopy vs metabarcoding in Balkan region?

Funded by European Union

Biolaweb project is finished and a good reference barcoding library for Balkan diatoms is available.


What can explain the differences between diatom lists obtained in microscopy vs metabarcoding in Balkan region?

- Dead frustules
- Barcode length not adapted to differenciate some neighbor species or varieties
- Rare species detection (usually better with DNA)
- Biovolumes
- You put Rakija for sample preservation

Give 2 different strategies for index developement based on metabarcoding data (diatoms or phytoplankton)?

Funded by European Union

Give two different strategies for index development based on metabarcoding data (diatoms or phytoplankton)?

If the barcoding library is complete enough: Mimic existing index

If the reference library is not complete enough: Taxonomy free index

Intermediate situation: use of phylogenetic signal to infer ecology of unassigned sequences and use this information in a existing index

Questions?

Funded by European Union